Bi-Objective Online Matching and Submodular Allocations

نویسندگان

  • Hossein Esfandiari
  • Nitish Korula
  • Vahab S. Mirrokni
چکیده

Online allocation problems have been widely studied due to their numerous practical applications (particularly to Internet advertising), as well as considerable theoretical interest. The main challenge in such problems is making assignment decisions in the face of uncertainty about future input; effective algorithms need to predict which constraints are most likely to bind, and learn the balance between short-term gain and the value of long-term resource availability. In many important applications, the algorithm designer is faced with multiple objectives to optimize. In particular, in online advertising it is fairly common to optimize multiple metrics, such as clicks, conversions, and impressions, as well as other metrics which may be largely uncorrelated such as ‘share of voice’, and ‘buyer surplus’. While there has been considerable work on multi-objective offline optimization (when the entire input is known in advance), very little is known about the online case, particularly in the case of adversarial input. In this paper, we give the first results for bi-objective online submodular optimization, providing almost matching upper and lower bounds for allocating items to agents with two submodular value functions. We also study practically relevant special cases of this problem related to Internet advertising, and obtain improved results. All our algorithms are nearly best possible, as well as being efficient and easy to implement in practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Submodular Secretary Problems: Cardinality, Matching, and Linear Constraints

We study various generalizations of the secretary problem with submodular objective functions. Generally, a set of requests is revealed step-by-step to an algorithm in random order. For each request, one option has to be selected so as to maximize a monotone submodular function while ensuring feasibility. For our results, we assume that we are given an offline algorithm computing an α-approxima...

متن کامل

Online Submodular Maximization with Free Disposal: Randomization

We study the online submodular maximization problem with free disposal under a matroid constraint. Elements from some ground set arrive one by one in rounds, and the algorithm maintains a feasible set that is independent in the underlying matroid. In each round when a new element arrives, the algorithm may accept the new element into its feasible set and possibly remove elements from it, provid...

متن کامل

Robust Submodular Maximization: Offline and Online Algorithms

Submodular function maximization has found numerous applications in constrained subset selection problems, for example picking a subset of candidate sensor locations that are most informative [22, 19, 16]. In many of these applications, the goal is to obtain a solution that optimizes multiple objectives at the same time. Constrained Robust Submodular maximization problems are used as a natural ...

متن کامل

An Optimal Online Algorithm for Weighted Bipartite Matching and Extensions to Combinatorial Auctions

We study online variants of weighted bipartite matching on graphs and hypergraphs. In our model for online matching, the vertices on the right-hand side of a bipartite graph are given in advance and the vertices on the left-hand side arrive online in random order. Whenever a vertex arrives, its adjacent edges with the corresponding weights are revealed and the online algorithm has to decide whi...

متن کامل

Online Submodular Maximization with Free Disposal: Randomization Beats ¼ for Partition Matroids

We study the online submodular maximization problem with free disposal under a matroid constraint. Elements from some ground set arrive one by one in rounds, and the algorithm maintains a feasible set that is independent in the underlying matroid. In each round when a new element arrives, the algorithmmay accept the new element into its feasible set and possibly remove elements from it, provide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016